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The motion of a particle in the field of a time-dependent potential is studied here both at absolute zero and
in the presence of thermal agitation. The potential executes either random fluctuations or deterministic har-
monic oscillations. Assuming absorbing boundaries it is always possible to find an exit timetexskd which has
a local minimum as a function of the potential flip ratek. Thus resonant activation, usually associated with
diffussive systems, exists in purely deterministic systems as well. Thermal agitation merely extends the range
of admissible initial conditions and renders all exit times finite.

DOI: 10.1103/PhysRevE.71.067102 PACS numberssd: 02.50.Ey, 02.60.Cb, 05.10.Gg

I. INTRODUCTION

Resonant activation was initially described in over-
damped, thermally activated metastable systems confined by
a potential whose barrier height executes random dichotomic
Markovian fluctuationsf1,2g. The mean first passage timet
out of the metastable region has in this case a local minimum
as a function of the fluctuation ratek. More recently, the
phenomenon was studied in some other systems with a fluc-
tuating barrierf3,4g and was shownf5g to exist also in over-
damped systems whose potential barrier height executes de-
terministic oscillations.

In this work we investigate the exit problem of an inertial
Brownian particle confined by a randomly fluctuating poten-
tial. We find that in full agreement with the Kramers theory
of thermal activationf6g the k-dependent mean exit time
depends in a nonmonotonic fashion on the dissipation
strength. However, we then also show that a very similar
phenomenon exists in nondiffusive, deterministic systems as
well. The thermally driven diffusive process does not change
the qualitative properties of the resonance effect, but merely
extends the range of admissible initial conditions and renders
all exit times finite.

The motion of an inertial particle with unit mass is de-
scribed here by the Langevin equation,

ẍ + hẋ + V8sx,td = Î2hTwstd, s1d

where ẋ=dx/dt, h is the dissipation constant,Vsx,td is a
time-dependent potential to be defined below,V8=dV/dx,
Tù0 is temperatureskB=1d, andwstd is the standard white-
noise process with two-time correlationkwst1dwst2dl=dst1
− t2d. The equation of motions1d is solved using the power-
series expansion

xst + Dd = xstd + vstdD + o
i=2

9

AiD
i , s2d

with vstd= ẋstd and the Ai =Aifxstd ,vstdg. The white-noise
terms wstd, where required, are generated by the Box-
Mueller algorithmf7g.

For definiteness of discussion we shall assume that Eq.s1d
describes deterministic motion ifT=0 and stochasticsran-
domd motion if T.0.

II. A THERMALLY ACTIVATED SYSTEM

The exit problem of a thermally activated inertial particle
is studied here for the simple case of a randomly switching
harmonic potential

Vsx,td = ± V0x
2/2, s3d

V0.0. The random waiting time between successive flips of
the potential isq, and we assume thatq has the Markovian
distribution

Psqd = ke−kq, s4d

wherek is the mean flip rate. The data presented below are
based on N=3500 realizations of the random process
hxstd , ẋstdj. Absorbing boundaries are assumed at the points
x= ±L, and the random valuestsid of the first passage time
are calculated for theN realization of the stochastic process
xsidstd, i P k1,Nl. The computed mean value

texsNd =
1

N
o
i=1

N

tsid

appears to converge to its limittexs`d as f8g

utexsNd − texs`du ~ texs`dN−1/2.

Finally, the random values of the exit velocity are defined as
vsid= ẋstsidd.

The exit properties are apparent from Fig. 1 where we
plot the mean first passage timetex=texskd out of the interval
xP s−L ,Ld, L=1, at selected values of the dissipation con-
stanth. In the simulations we setxs0d=0 andvs0d=0, and in
order to maximize the resonance effectssee Fig. 4 below and
the discussion of Ref.f5gd we also setVsx,0dù0 throughout.

In a nonfluctuating potential the mean first passage time
has a local minimumf6g as a function of the dissipation
strengthh. According to Fig. 1 a corresponding effect exists
in the fluctuating potential at all values of the flip ratek sthe
local minimum is here close toh=1d. In the limit k→` the
mean first passage time approaches the free-particle result
f2g, while in the limit k→0 the particle most probably exists
shortly after the first flip of the potentialVsx,td, and tex

*k−1 as shown in the plot. With decreasing temperatureT
the minimum oftexskd shifts to the left for all values ofh.
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In the nonfluctuating potential the mean exit velocityvex
=vexshd is all but constant at smallh, and decreases to zero
ash→`. These two asymptotic regions are separated by an
indistinct local maximum which is located a little to the right
of the minimum oftexshd; these two regions are easily dis-
cerned in the plots of Fig. 1. Similar totexskd, the function
vexskd approaches the free-particle values ask→`. Simula-
tions of the underdamped free-particle motion suggest that

tex = s6hTL−2d−1/3, s5d

vex = s6hTLd1/3. s6d

The fitted Eq.s5d is comparable to the analytic results of Ref.
f9g. In the overdamped limit one has further the standard
result f6g,

tex = hT−1L/2, s7d

while at sufficently long exit timestex@h−1 there is

vex = T−1/2. s8d

The dependence of the two functionstex=texsh ,k uLd and
vex=vexsh ,k uLd on the interval widthL is determined by the
detailed form of the potentialVsx,td. Representative plots of
the two functionstex=texsLd and vex=vexsLd for the har-
monic potential of Eq.s3d are shown in Fig. 2. The plots
show that at small values of the fluctuation ratek the func-
tion tex=texsLd increases initially very rapidly with smallL,

and then only very slowly with largeL. We assume this
slowdown to be an inertial effect which vanishes at large
fluctuation rates where the functiontex=texsLd increases rap-
idly at all values ofL. With decreasing dissipation strengthh
this inertial behavior extends progressively to higher values
of the fluctuation ratek.

The exit velocityvex=vexsLd has an initial rapid step fol-
lowed by gradual growth at larger values ofL. The magni-
tude of the initial step decreases with decreasing values ofh
and T, and we assume that the step represents the initial
spartiald equilibrization of the particle with the ambient heat
bath. Interestingly, at low temperatures and low damping
there is vexsLd~L for almost all values ofL. This width
dependence seems to be an artifact of the harmonic motion.

III. SYSTEMS AT T=0

In this section we show that the exit time becomes a non-
monotonic function of the flip ratek even in the absence of
thermally driven diffusion. The phenomenon, moreover, ex-
ists both in systems executing random fluctuations of the
potential V=Vsx,td and in systems executing deterministic
oscillations.

We consider first the piecewise deterministic motion in
the field of the randomly switching harmonic potentials3d.
The same as before, we assumeVsx,0dù0, but in order to
obtain nontrivial solutions of the homogeneous,T=0, equa-
tion s1d we now impose the nontrivial initial conditions
xs0d=0 andvs0d= ±1 with equal probability. The resultant
mean first passage time averaged over the random flips of the
potentials3d is plotted in Fig. 3. In the limitk→0 there is

FIG. 1. The mean first passage timetex stopd out of the interval
s−1,1d and the corresponding mean exit velocityvex sbottomd vs
the mean flip ratek. TemperatureT=1, and the potential amplitude
V0=50. Initial conditionsxs0d=0, vs0d=0, andVsx,0dù0. Dissipa-
tive strength h=0.001 slabeledd, 0.01, 0.05, 0.25, 1slabeled,
s-markedd, 5, 10slabeledd, 30 slabeledd, 50, and 100slabeledd. The
h,1 curves are shown in dashed lines. In the bottom plot theh
=0.001 and 0.01 curves are too close to the other two smallh plots
and are therefore omitted.

FIG. 2. The mean first passage timetex stopd out of the interval
s−L ,Ld and the corresponding mean exit velocityvex sbottomd vs
the interval widthL. TemperatureT=0.1 and the potential ampli-
tude V0=50. Initial conditions as in Fig. 1, dissipation strengthh
=30. The fluctuation ratek is ln k=−2, −1, 0, 1, 2, 3, and 4 as
labeled.
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tex*k−1 as before, but the largek behavior depends on the
dissipation strengthh: At sufficiently large values ofk andh
the particle becomes trapped in a quasiperiodic trajectory
entirely enclosed within the intervalxP s−1,1d and the exit
time is in this case infinitessee, e.g., theh=2 curve of Fig.
3d. At small h and largek, on the other hand, the particle
exits as if it were essentially free, as shown here by theh
=0.01 curve. With increasing initial velocity this behavior
extends to ever larger values of the dissipation strength.

A family of curves very similar to those shown in Fig. 3
can also be obtained by settingh=0 and by varying the
initial energy of the particle. In this case, apparently, all exit
times are finite.

In general we find that the resonance effect in piecewise
deterministic systems exists only in a narrow range of pa-
rameters. For example, if the potentialVsx,td oscillates be-
tween the valuesVsxd=V0x

2/2 and Vsxd=0, then the exit
time texskd has a local minimum atk<1 if Vsx,0dù0, V0

=10, andL&0.6 provided thatxs0d=0 and the values ofvs0d
andh are not too high. Interestingly, in this case the exit time
is infinite at both very small and at very large values of the
fluctuation ratek.

The above simple examples demonstrate that there exists
no qualitative difference between the exit properties de-
scribed by theT=0, homogeneous equation of motions1d,
and by theT.0, inhomogeneous equation of motion. The
inhomogeneous term merely allows for nontrivial solutions
with the trivial initial conditionsxs0d=0 andvs0d=0. Under
the influence of this term, moreover, the Brownian particle
may cross the separatrix, so that all exit times become finite,
in contrast to theT=0 case where infinite exit times are
possible.

We wish now to conclude the paper by demonstrating that
the resonant effect exists also in purely deterministic systems
with oscillating barriers, and to this end we set

Vsx,td = V0
x2

2
cosskt + fd s9d

in Eq. s1d. The T.0 overdamped dynamics of this system
were analyzed in Ref.f5g where it was shown that the har-

monically oscillating potential leads to a resonance effect
fully comparable to the customary resonancef1g due to ran-
dom fluctuations of the barrier height. The deterministic exit
times of an inertial particle atT=0 are shown in Fig. 4. The
resonance effect exists here at sufficiently small values of the
initial velocity vs0dÞ0, and at a suitable choice of the phase
f. This phase dependence was discussed in Ref.f5g. A par-
ticle with a high initial velocity again exits as if it were
essentially free.

In the overdamped limit the above equation of motion
becomes

ẋ = − V0x cosskt + fd. s10d

The explicit solution of this equation,

xstd = xs0dexphV0k−1fsinf − sinskt + fdgj, s11d

yields exit times which do not qualitatively differ from the
texsk ,fd curves shown in Fig. 4stopd.

In summary, therefore, we conclude that the origin of
resonant activation is to be found in the exit behavior of a
deterministic particle confined by a potential with time-
dependent barrier height. Inclusion of thermal activation ex-
tends the range of the resonant effect to trajectories which
originate in the stable points of the potential, and it also
renders all exit times finite.

FIG. 3. The mean first passage timetex out of the interval
s−1,1d vs the mean flip ratek. TemperatureT=0, and the potential
amplitudeV0=50. Initial conditionsxs0d=0, vs0d= ±1 with equal
probability, andVsx,0dù0. Dissipative strengthh=0.01 slabeledd,
0.2, 0.3, 0.5slabeledd, 1, 1.5, and 2slabeledd. Unsmoothed data
curves.

FIG. 4. The exit timetex out of the intervals−1,1d vs the os-
cillatory ratek for the inertial deterministic motion given atT=0 by
Eqs. s1d and s5d. The phasef /2p=4/8 slowermost curvesd, 2 /8,
1/8 slabeledd, 0, 7 /8, and 6/8stopmost curves, labeledd. Initial
conditionsxs0d=0 andvs0d=0.02 stopd, and xs0d=0 andvs0d=1
sbottomd. Dissipation strengthh=0.1.
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