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Resonant exit time in stochastic and deterministic systems
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The motion of a particle in the field of a time-dependent potential is studied here both at absolute zero and
in the presence of thermal agitation. The potential executes either random fluctuations or deterministic har-
monic oscillations. Assuming absorbing boundaries it is always possible to find an exittirewhich has
a local minimum as a function of the potential flip rate Thus resonant activation, usually associated with
diffussive systems, exists in purely deterministic systems as well. Thermal agitation merely extends the range
of admissible initial conditions and renders all exit times finite.

DOI: 10.1103/PhysRevE.71.067102 PACS nunid)er02.50.Ey, 02.60.Cb, 05.10.Gg

I. INTRODUCTION IIl. ATHERMALLY ACTIVATED SYSTEM

Resonant activation was initially described in over- The exit problem of a thermally activated inertial particle
damped, thermally activated metastable systems confined ki studied here for the simple case of a randomly switching
a potential whose barrier height executes random dichotomibarmonic potential
Markovian quctuannil,?]. The mean first passage tllm'e V(xt) = +Vgll2, 3)
out of the metastable region has in this case a local minimum
as a function of the fluctuation rate. More recently, the V,>0. The random waiting time between successive flips of
phenomenon was studied in some other systems with a flu¢he potential isd, and we assume thdk has the Markovian
tuating barrief 3,4] and was showf5] to exist also in over- distribution
damped systems whose potential barrier height executes de- Lk
terministic oscillations. P(9) = ke™?, 4)

In this work we investigate the exit problem of an inertial where « is the mean flip rate. The data presented below are
Brownian particle confined by a randomly fluctuating poten-pased onN=3500 realizations of the random process
tial. We find that in full agreement with the Kramers theory {x(t),x(t)}. Absorbing boundaries are assumed at the points
of thermal activation[6] the x-dependent mean exit time x=+L, and the random valueg’ of the first passage time

depends in a nonmonotonic fashion on the dissipationyre calculated for th#l realization of the stochastic process
strength. However, we then also show that a very similag()(t) i <(1,N). The computed mean value
phenomenon exists in nondiffusive, deterministic systems as

well. The thermally driven diffusive process does not change 1 N 0

the qualitative properties of the resonance effect, but merely TedN) = NZ

extends the range of admissible initial conditions and renders =

all exit times finite. appears to converge to its limit,() as[8]

The motion of an inertial particle with unit mass is de- 1o

scribed here by the Langevin equation, |7ex(N) = Tex(%0)] o Te{ )NV,
G4 s y [ Finally, the random values of the exit velocity are defined as
S+ px+ V' (x,1) = \V2Tw(D), (1) v(i>=)'()(/ ) y

where x=dx/dt, z is the dissipation constan¥/(x,t) is a The exit properties are apparent from Fig. 1 where we

time-dependent potential to be defined bel&v=dV/dx, plot the mean first passage timg= 7.,(x) out of the interval
T=0 is temperaturékg=1), andw(t) is the standard white- xe (-L,L), L=1, at selected values of the dissipation con-
noise process with two-time correlatiofwv(t;)w(t,))=48(t;  stants. In the simulations we sed0)=0 andv(0)=0, and in
—t,). The equation of motioitl) is solved using the power- order to maximize the resonance efféste Fig. 4 below and
series expansion the discussion of Ref5]) we also se¥(x,0) =0 throughout.

In a nonfluctuating potential the mean first passage time
has a local minimun{6] as a function of the dissipation
strengthz. According to Fig. 1 a corresponding effect exists
in the fluctuating potential at all values of the flip ratéthe
with v(t)=X(t) and the A=A[x(t),v(t)]. The white-noise Ilocal minimum is here close tg=1). In the limit k— o the
terms w(t), where required, are generated by the Box-mean first passage time approaches the free-particle result
Mueller algorithm[7]. [2], while in the limit «— 0 the particle most probably exists

For definiteness of discussion we shall assume thatlqg. shortly after the first flip of the potentidV(x,t), and 7,
describes deterministic motion =0 and stochasti¢ran- =«"! as shown in the plot. With decreasing temperaflire
dom) motion if T>0. the minimum ofr,(x) shifts to the left for all values o#.

9
X(t+A) =x(t) +v(H)A + >, AAT 2)

i=2
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FIG. 2. The mean first passage timg (top) out of the interval

¢ ! _ (-L,L) and the corresponding mean exit velocity, (bottom vs
(-1,1) and the corresponding mean exit velocity (bottom Vs 6 interval widthl. TemperatureT=0.1 and the potential ampli-
the mean flip rate.. Temperaturd=1, and the potential amplitude e v/ =50 Initial conditions as in Fig. 1, dissipation strengjh
V,=50. Initial conditionsx(0)=0, v(0)=0, andV(x,0) =0. Dissipa- =30. The fluctuation rate is Inxk=-2, -1, 0, 1, 2, 3. and 4 as
tive strength »=0.001 (labeled, 0.01, 0.05, 0.25, 1(labeled, labeled.

O-marked, 5, 10(labeled, 30 (labeled, 50, and 10Glabeled. The

n<1 curves are shown in dashed lines. In the bottom plotsthe . .
=0.001 and 0.01 curves are too close to the other two sgplbts ~ @nd then only very slowly with large.. We assume this
and are therefore omitted. slowdown to be an inertial effect which vanishes at large

fluctuation rates where the functieg,= 7.,(L) increases rap-
idly at all values ofL. With decreasing dissipation strenggh

In the nonfluctuating potential the mean exit veloaig this inertial behavior extends progressively to higher values
=ve(7) is all but constant at smaly, and decreases to zero . prog y 9
of the fluctuation ratex.

as n— o0, These two asymptotic regions are separated by an : . s - . i
indistinct local maximum which is located a little to the right The exit velocityve,=veL) has an initial rapid step fol
lowed by gradual growth at larger values lof The magni-

f the mini f ; th i ily dis- L . .
of the minimum o TEX(W).’ t ese.tvyo regions are easily dis tude of the initial step decreases with decreasing valueg of
cerned in the plots of Fig. 1. Similar tg,(«x), the function d d hat th he initial
(x) approaches the free-particle value » Simula- " T, and we assume that the step represents the initia
Vex £ th derd qf il SKAS 2°. h (partia) equilibrization of the particle with the ambient heat
tions of the underdamped free-particle motion suggest thatp, i, - nterestingly, at low temperatures and low damping
Toy = (67TL) 713, (5)  there isve L)L for almost all values ofL. This width
dependence seems to be an artifact of the harmonic motion.

FIG. 1. The mean first passage timg (top) out of the interval

vex= (67TL)'". (6)
The fitted Eq(5) is comparable to the analytic results of Ref. Ill. SYSTEMS AT T=0
9]. In the overdamped limit one has further the standard . . o
Ee]sult[6] v P m . In this section we show that the exit time becomes a non-
' monotonic function of the flip rate even in the absence of
Tex= 7T 1L/2, (7)  thermally driven diffusion. The phenomenon, moreover, ex-
) ] o 1 ] ists both in systems executing random fluctuations of the
while at sufficently long exit times,,> 7" there is potential V=V(x,t) and in systems executing deterministic
v =T 12 (8) oscillations.
ex .

We consider first the piecewise deterministic motion in
The dependence of the two functiong=7.(7,«|L) and  the field of the randomly switching harmonic potent(a).

Vex=Vex(7, k| L) ON the interval width_ is determined by the The same as before, we assuli{e,0)=0, but in order to
detailed form of the potential(x,t). Representative plots of obtain nontrivial solutions of the homogeneoliis;0, equa-

the two functions7e,=7e(L) and ve,=ve,(L) for the har-  tion (1) we now impose the nontrivial initial conditions
monic potential of Eq(3) are shown in Fig. 2. The plots x(0)=0 andv(0)==1 with equal probability. The resultant
show that at small values of the fluctuation rat¢he func-  mean first passage time averaged over the random flips of the
tion 7= 7, (L) increases initially very rapidly with small,  potential (3) is plotted in Fig. 3. In the limitk— 0 there is
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FIG. 3. The mean first passage timg, out of the interval 31 6/8
(=1, vs the mean flip rat&. Temperaturd =0, and the potential ~ 2]
amplitudeVy=50. Initial conditionsx(0)=0, v(0)=+1 with equal o
probability, andV(x,0) = 0. Dissipative strengtly=0.01 (labeled, £ 4] 178
0.2, 0.3, 0.5(labeled, 1, 1.5, and 2(labeled. Unsmoothed data
curves. 0+
Tex= k' as before, but the large behavior depends on the 3 2 4 0 A 2 3 4
dissipation strengthy: At sufficiently large values ok and Inx
the particle becomes trapped in a quasiperiodic trajectory
entirely enclosed within the intervale (-1,1) and the exit FIG. 4. The exit timerg, out of the interval(-1,1) vs the os-

time is in this case infinitésee, e.g., they=2 curve of Fig. cillatory ratex for the inertial deterministic motion given @0 by
3). At small 5 and large, on the other hand, the particle Eds-(1) and(5). The phase$/27=4/8 (lowermost curves 2/8,
exits as if it were essentially free, as shown here by ghe 1/8 (1abeled, 0, 7/8, and 6/8(topmost curves, labeledinitial
=0.01 curve. With increasing initial velocity this behavior ?gnt?'tr':;n%)f(o).:ot_ and;;(O):to.(E%(iop), andx(0)=0 andv(0)=1
extends to ever larger values of the dissipation strength. ottom. Dissipation strengt=0.1.

A family of curves very similar to those shown in Fig. 3 ) - )
can also be obtained by setting=0 and by varying the monically oscillating potential leads to a resonance effect
initial energy of the particle. In this case, apparently, all exitfully comparable to the customary resonafitgdue to ran-
times are finite. dom fluctuations of the barrier height. The deterministic exit

In general we find that the resonance effect in piecewiséimes of an inertial particle af=0 are shown in Fig. 4. The
deterministic systems exists only in a narrow range of paresonance effect exists here at sufficiently small values of the
rameters. For examp|e’ if the potenth,t) oscillates be- initial VelOCity U(O) # 0, and at a suitable choice of the phase
tween the values/(x)=Vyx2/2 and V(x)=0, then the exit ¢- This phase dependence was discussed in [BgfA par-
time 7.,(x) has a local minimum ak~1 if V(x,0)=0, V, ticle W_lth a high initial velocity again exits as if it were
=10, andL < 0.6 provided thax(0)=0 and the values of(0) ~ €ssentially free. o , ,
and 7 are not too high. Interestingly, in this case the exit time, " the overdamped limit the above equation of motion
i infinite at both very small and at very large values of the®€comes
fluctuation ratex.

The above simple examples demonstrate that there exists
no qualitative difference between the exit properties de-
scribed by theT=0, homogeneous equation of moti¢h),
and by theT>0, inhomogeneous equation of motion. The
inhomogeneous term merely allows for nontrivial solutions
with the trivial initial conditionsx(0)=0 andv(0)=0. Under
the influence of this te_rm, moreover, t_he_ Brownian part_ic_le x(t) :x(O)exp{VOK'l[sin¢— sin(kt + )]}, (11)
may cross the separatrix, so that all exit times become finite,
in contrast to theT=0 case where infinite exit times are
possible. yields exit times which do not qualitatively differ from the

We wish now to corjclude the paper by demc')n'strating that_ (. ¢) curves shown in Fig. 4top).
the resonant effect exists also in purely deterministic systems | symmary, therefore, we conclude that the origin of

X==Vox cogkt + ). (10

The explicit solution of this equation,

with oscillating barriers, and to this end we set resonant activation is to be found in the exit behavior of a
N deterministic particle confined by a potential with time-
V(x,1) =Vos cogkt + ¢) (9)  dependent barrier height. Inclusion of thermal activation ex-

tends the range of the resonant effect to trajectories which
in Eq. (1). The T>0 overdamped dynamics of this system originate in the stable points of the potential, and it also
were analyzed in Ref5] where it was shown that the har- renders all exit times finite.
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